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Constant-Cutoff Approach to Strangeness
Dependence in Radiative Decays of Hyperons

Nils Dalarsson1

Received August 15, 1997

We suggest a quantum stabilization method for the SU(2) s -model, based on the
constant-cutoff limit of the cutoff quantization method developed by Balakrishna
et al., which avoids the difficulties with the usual soliton boundary conditions
pointed out by Iwasaki and Ohyama. We investigate the baryon number B 5 1
sector of the model and show that after the collective-coor dinate quantization it
admits a stable soliton solution which depends on a single dimensional arbitrary
constant. We then study the radiative decays of J p 5 3±2

+ baryons using the constant-
cutoff approach to the SU(3) collective treatment of the Skyrme model for
hyperons. Thus we investigate the radiative hyperon decays and the variation of the
decay widths with strangeness, showing that the present results are in qualitative
agreement with the results obtained using the complete Skyrme model.

1. INTRODUCTION

It was shown by Skyrme (1961, 1962) that baryons can be treated as
solitons of a nonlinear chiral theory. The original Lagrangian of the chiral

SU(2) s -model is

+ 5
F 2

p

16
Tr - m U - m U + (1.1)

where

U 5
2

F p
( s 1 i t ? p ) (1.2)

is a unitary operator (UU+ 5 1) and F p is the pion-decay constant. In (1.2),

s 5 s (r) is a scalar meson field and p 5 p (r) is the pion isotriplet.
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The classical stability of the soliton solution to the chiral s -model

Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961,

1962), to be added to (1.1)

+SK 5
1

32e 2 Tr[U + - m U, U + - n U ]2 (1.3)

with a dimensionless parameter e and where [A, B] 5 AB 2 BA. It has been

shown by several authors (Adkins et al., 1983; see also Witten, 1979, 1983a,b)

that, after the collective quantization using the spherically symmetric ansatz

U0(r) 5 exp[i t ? r0 F (r)], r0 5 r/r (1.4)

the chiral model, with both (1.1) and (1.3) included, gives good agreement

with experiment for several important physical quantities. Thus it should be

possible to derive the effective chiral Lagrangian, obtained as a sum of (1.1)

and (1.3), from a more fundamental theory like QCD. On the other hand it

is not easy to generate a term like (1.3) and give a clear physical meaning
to the dimensionless constant e in (1.3) using QCD.

Mignaco and Wulck (1989) (MW) indicated therefore a possibility of

building a stable single-baryon (n 5 1) quantum state in the simple chiral

theory with the Skyrme stabilizing term (1.3) omitted. They showed that the

chiral angle F (r) is in fact a function of a dimensionless variable s 5 1±2 x 9(0)r,
where x 9(0) is an arbitrary dimensional parameter intimately connected to

the usual stability argument against the soliton solution for the nonlinear s -

model Lagrangian.

Using the adiabatically rotated ansatz U (r, t) 5 A (t)U0(r) A +(t), where

U0(r) is given by (1.4), MW obtained the total energy of the nonlinear s -

model soliton in the form

E 5
p
4

F 2
p

1

x 9(0)
a 1

1

2

[ x 9(0)]3

( p /4) F 2
p b

J (J 1 1) (1.5)

where

a 5 #
`

0 F 1

4
s 2 1 d^

ds 2
2

1 8 sin2 1 14 ^ 2 G ds (1.6)

b 5 #
`

0

ds
64

3
s 2 sin2 1 14 ^ 2 (1.7)

and ^(s) is defined by
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F (r) 5 F (s) 5 2 n p 1
1

4
^(s) (1.8)

The stable minimum of the function (1.5) with respect to the arbitrary dimen-

sional scale parameter x 9(0) is

E 5
4

3
F p F 3

2 1 p4 2
2

a 3

b
J(J 1 1) G

1/4

(1.9)

Despite the nonexistence of the stable classical soliton solution to the

nonlinear s -models it is possible, after collective-coordinate quantization, to

build a stable chiral soliton at the quantum level, provided that there is a

solution F 5 F (r) which satisfies the soliton boundary conditions, i.e., F(0) 5
2 n p , F ( ` ) 5 0, such that the integrals (1.6) and (1.7) exist.

However, as pointed out by Iwasaki and Ohyama (1989), the quantum

stabilization method in the form proposed by MW is not correct since in the

simple s -model the conditions F (0) 5 2 n p and F ( ` ) 5 0 cannot be satisfied

simultaneously. In other words, if the condition F (0) 5 2 p is satisfied,

Iwasaki and Ohyama obtained numerically F ( ` ) ® 2 p /2, and the chiral
phase F 5 F (r) with correct boundary conditions does not exist.

Iwasaki and Ohyama also proved analytically that both boundary condi-

tions F (0) 5 2 n p and F ( ` ) 5 0 cannot be satisfied simultaneously. Introduc-

ing a new variable y 5 1/r into the differential equation for the chiral angle

F 5 F (r), we obtain

d 2F

dy2 5
1

y 2 sin 2F (1.10)

There are two kinds of asymptotic solutions to equation (1.10) around the

point y 5 0, which is called a regular singular point if sin 2F ’ 2F. These

solutions are

F (y) 5
m p
2

1 cy2, m even integer (1.11)

F (y) 5
m p
2

1 ! cy cos F ! 7

2
ln(cy) 1 a G , m odd integer (1.12)

where c is an arbitrary constant and a is a constant to be chosen appropriately.
When F (0) 5 2 n p then we want to know which of these two solutions are

approached by F (y) when y ® 0 (r ® ` ). In order to answer to question

we multiply (1.10) by y 2F 8 ( y), integrate with respect to y from y to ` , and

use F (0) 5 2 n p . Thus we get
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y 2F 8( y) 1 #
`

y

2y [F 8( y)]2 dy 5 1 2 cos[2F (y)] (1.13)

Since the left-hand side of (1.13) is always positive, the value of F ( y) is

always limited to the interval n p 2 p , F (y) , n p 1 p . Taking the limit

y ® 0, (1.13) is reduced to

#
`

0

2y [F 8( y)]2dy 5 1 2 ( 2 1)m (1.14)

where we used (1.11)±(1.12). Since the left-hand side of (1.14) is strictly

positive, we must choose an odd integer m. Thus the solution satisfying F (0)

5 2 n p approaches (1.12) and we have F ( ` ) Þ 0. The behavior of the

solution (1.11) in the asymptotic region y ® ` (r ® 0) is investigated by

multiplying (1.10) by F 8( y), integrating from 0 to y, and using (1.11). The
result is

[F 8( y)]2 5
2 sin2F ( y)

y 2 1 #
y

0

2 sin2F ( y)

y 3 dy (1.15)

From (1.15) we see that (F 8( y) ® const as y ® ` , which means that F (r) .
1/r for r ® 0. This solution has a singularity at the origin and cannot satisfy
the usual boundary condition F (0) 5 2 n p .

In Dalarsson (1991a, b, 1992) I suggested a method to resolve this

difficulty by introducing a radial modification phase w 5 w (r) in the ansatz

(1.4) as follows:

U (r) 5 exp[i t ? r0 F (r) 1 i w (r)], r0 5 r/r (1.16)

Such a method provides a stable chiral quantum soliton, but the resulting

model is an entirely noncovariant chiral model, different from the original

chiral s -model.

In the present paper we use the constant-cutoff limit of the cutoff quanti-

zation method developed by Balakrishna et al. (1991; see also Jain et al.,
1989) to construct a stable chiral quantum soliton within the original chiral

s -model. We then study the radiative decays of J p 5 3±2
+ baryons using the

constant-cutoff approach to the SU(3) collective treatment of the Skyrme

model for hyperons (Dalarsson, 1993, 1995a±d, 1996a±c, 1997a±c). Thus

we investigate the radiative hyperon decays and the variation of the decay

widths with strangeness, showing that the present results are in qualitative
agreement with the results obtained using the complete Skyrme model

(Haberichter et al., 1997).

The reason why the cutoff approach to the problem of chiral quantum

soliton works is connected to the fact that the solution F 5 F (r) which
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satisfies the boundary condition F ( ` ) 5 0 is singular at r 5 0. From the

physical point of view the chiral quantum model is not applicable to the

region about the origin, since in that region there is a quark-dominated bag
of the soliton.

However, as argued in Balakrishna et al. (1991), when a cutoff is intro-

duced, the boundary conditions F( e ) 5 2 n p and F ( ` ) 5 0 can be satisfied.

These authors discussed an interesting analogy with the damped pendulum,

showing clearly that as long as e . 0, there is a chiral phase F 5 F (r)
satisfying the above boundary conditions. The asymptotic forms of such a
solution are given by (2.2) in Balakrishna et al. (1991). From these asymptotic

solutions we immediately see that for e ® 0 the chiral phase diverges at the

lower limit.

Different applications of the constant-cutoff approach have been been

discussed in Dalarsson. (1993, 1995a±d, 1996a±c, 1997a±d)

2. CONSTANT-CUTOFF STABILIZATION

Substituting (1.4) into (1.1), we obtain for the static energy of the

chiral baryon

E0 5
p
2

F 2
p #

`

e (t)

dr F r 2 1 dF

dr 2
2

1 2 sin2F G (2.1)

In (2.1) we avoid the singularity of the profile function F 5 F(r) at the origin

by introducing the cutoff e (t) at the lower boundary of the space interval r P
[0, ` ], i.e., by working with the interval r P [ e , ` ]. The cutoff itself is

introduced following Balakrishan et al. (1991) as a dynamic time-

dependent variable.
From (2.1) we obtain the following differential equation for the profile

function F 5 F (r):

d

dr 1 r 2 dF

dr 2 5 sin 2F (2.2)

with the boundary conditions F ( e ) 5 2 p and F ( ` ) 5 0, such that the correct

soliton number is obtained. The profile function F 5 F [r; e (t)] now depends

implicitly on time t through e (t). Thus in the nonlinear s -model Lagrangian

L 5
F 2

p

16 # Tr( - m U - m U +) d 3r (2.3)
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we use the ansaÈ tze

U(r, t) 5 A (t)U0(r, t)A +(t), U +(r, t) 5 A (t)U 1
0 (r, t)A +(t) (2.4)

where

U0(r, t) 5 exp{i t ? r0 F[r; e (t)] (2.5)

The static part of the Lagrangian (2.3), i.e.,

L 5
F 2

p

16 # Tr( ¹ U ? ¹ U +) d 3r 5 2 E0 (2.6)

is equal to minus the energy E0 given by (2.1). The kinetic part of the

Lagrangian is obtained using (2.4) with (2.5) and is equal to

L 5
F 2

p

16 # Tr( - 0U - 0U
+) d 3r 5 bx2 Tr[ - 0 A - 0 A +] 1 c [x (t)]2 (2.7)

where

b 5
2 p
3

F 2
p #

`

1

sin2F y2 dy, c 5
2 p
9

F 2
p #

`

1

y 2 1 dF

dy 2
2

y 2 dy (2.8)

with x (t) 5 [ e (t)]3/2 and y 5 r / e . On the other hand, the static energy functional

(2.1) can be rewritten as

E0 5 ax2/3, a 5
p
2

F 2
p #

`

1 F y 2 1 dF

dy 2
2

1 2 sin2F G dy (2.9)

Thus the total Lagrangian of the rotating soliton is given by

L 5 cxÇ 2 2 ax2/3 1 2bx2 a
Ç

n a
Ç n (2.10)

where Tr( - 0 A - 0 A +) 5 2 a
Ç

n a
Ç n and a n ( n 5 0, 1, 2, 3) are the collective

coordinates defined as in Bhaduri (1988). In the limit of a time-independent

cutoff (xÇ ® 0) we can write

H 5
- L

- a
Ç n a

Ç n 2 L 5 ax2/3 1 2bx2 a
Ç

n a
Ç n 5 ax2/3 1

1

2bx2 J(J 1 1) (2.11)

where ^ J2 & 5 J (J 1 1) is the eigenvalue of the square of the soliton angular

momentum. A minimum of (2.11) with respect to the parameter x is reached at

x 5 F 2

3

ab

J (J 1 1) G
2 3/8

« e 2 1 5 F 2

3

ab

J (J 1 1) G
1/4

(2.12)
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The energy obtained by substituting (2.12) into (2.11) is given by

E 5
4

3 F 3

2

a 3

b
J (J 1 1) G

1/4

(2.13)

This result is identical to the result obtained by Mignaco and Wulck, which
is easily seen if we rescale the integrals a and b in such a way that a ®
( p /4)F 2

p a and b ® ( p /4)F 2
p b and introduce f p 5 2 2 3/2F p . However in the

present approach, as shown in Balakrishna et al. (1991), there is a profile

function F 5 F (y) with proper soliton boundary conditions, F (1) 5 2 p and

F ( ` ) 5 0 and the integrals a, b, and c in (2.9)±(2.11) exist and are shown
in Balakrishna et al. (1991) to be a 5 0.78 GeV2, b 5 0.91 GeV2, and c 5
1.46 GeV2 for F p 5 186 MeV.

Using (2.13), we obtain the same prediction for the mass ratio of the

lowest states as found by Mignaco and Wulck (1989), which agrees rather

well with the empirical mass ratio for the D -resonance and the nucleon.

Furthermore , using the calculated values for the integrals a and b, we obtain
the nucleon mass M (N ) 5 1167 MeV, which is about 25% higher than the

empirical value of 939 MeV. However, if we choose the pion decay constant

equal to F p 5 150 MeV, we obtain a 5 0.507 GeV2 and b 5 0.592 GeV2,

giving exact agreement with the empirical nucleon mass.

Finally, it is of interest to know how large the constant cutoffs are for

the above values of the pion-decay constant in order to check if they are in
the physically acceptable ballpark. Using (2.12), it is easily shown that for

the nucleons (J 5 1±2 ) the cutoffs are equal to

e 5 H 0.22 fm for F p 5 186 MeV

0.27 fm for F p 5 150 MeV
(2.14)

From (2.14) we see that the cutoffs are too small to agree with the size of

the nucleon (0.72 fm), as we should expect since the cutoffs indicate the size
of the quark-dominated bag in the center of the nucleon. Thus we find that

the cutoffs are of reasonable physical size. Since the cutoff is proportional

to F 2 1
p we see that the pion-decay constant must be less than 57 MeV in

order to obtain a cutoff which exceeds the size of the nucleon. Such values

of pion-decay constant are not relevant to any physical phenomena.

3. RADIATIVE DECAYS OF HYPERONS IN THE SU(3)
SKYRME MODEL

3.1. Introduction

As argued in Dalarsson (1997b) and Haberichter et al. (1997), the data

on the electromagnetic decays of baryons, like the reaction D ® N g , are
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rather limited. The ratio of the electric quadrupole (E2) to the magnetic dipole

(M1) amplitude obtained by the p 0( 1 )-photoproduct ion experiment at MIAMI

(Dalarsson (1997b) is E2/M1 5 ( 2 2.5 6 0.2)%. For J 5 3±2 to J 5 1±2 transitions,
which involve strange baryons, the empirical values for the E2/M1 ratios are

still not available. The experiments at CEBAF and Fermilab (Haberichter et
al., 1997) will provide additional data on those radiative decays and the

pattern of flavor symmetry braeking.

Nevertheless, these transitions have been studied within several models

and in Schat et al. (1995a) an analysis of the hyperon radiative decays
was made within the framework of the bound-state approach (Callan and

Klebanov, 1985; Callan et al., 1988) to the Skyrme model (Skyrme, 1961,

1962). In that approach hyperons are modeled as kaons bound in the

background of the static soliton field. For the particular case of L (1405)

in the bound-state approach to the complete Skyrme model and in the

constant-cutoff treatment of the bound-state approach see Park et al. (1991)
and Park and Weigel (1992). However, in Dalarsson (1997b) hyperons

are alternatively described using the SU(3) collective approach to the

constant-cutoff model, where the strange degrees of freedom are incorpo-

rated as SU(3) collective excitations of the nonstrange soliton to investigate

the transitions B (J 5 3±2 ) ® g B8(J 5 1±2 ).
In the present section we study the radiative decays of J p 5 3±2

+ baryons

using the constant-cutoff approach to the SU(3) collective treatment of the

Skyrme model for hyperons (Dalarsson, 1997b). Thus we investigate the

variation of the decay widths with strangeness, showing that the present

results are in qualitative agreement with the results obtained using the com-

plete Skyrme model (Haberichter et al., 1997).

3.2. The Effective Interaction

The Lagrangian density for the SU(3) collective model of hyperons is

given, with the Skyrme stabilizing term omitted, by (Haberichter et al., 1997)

+ 5
F 2

p

16
Tr D m U D m U + 2

F 2
p m 2

p 1 2F 2
km

2
k

48
Tr[U 1 U + 2 2]

1
F 2

p m 2
p 2 F 2

K m 2
K

8 ! 3
Tr[ l 8(U 1 U +)]

1
F 2

p 2 F 2
k

16
Tr{S[U (D m U )+D m U 1 U +D m U (D m U )+]}

1 iL9( - m A n 2 - n A m ) Tr[Q (U + - m U U + - n U 1 U - m U + U - n U
+] (3.1)

where FK is the kaon decay constant, m p and mK are the pion and kaon

masses, respectively, and
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S 5 3
0 0 0

0 0 0

0 0 1 4 (3.2)

is the projector onto the strange degrees of freedom, and

D m U 5 - m U 1 ieA m [Q, U ] (3.3)

The last term in (3.1) represents the direct derivative coupling of the baryon

fields to the photon field A m . In fourth-order chiral perturbation, the last term

in (3.1) is necessary to reproduce the electromagnetic pion radius correctly

in this model, thus determining the value of the parameter L9 5 (6.9 6 0.7)

3 10 2 3. In addition to the action obtained using the Lagrangian (3.1), the

Wess±Zumino action gauged to contain the photon field

S 5 2
iNc

240 m 2 # d 5x e m n a b g Tr[U + - m U U + - n U U + - a U U + - b U U + - g U ]

2
eNc

48 p 2 # d 4x e m n a b A m Tr[Q (U + - n U U + - a U U + - b U

2 U - n U
+ U - a U +U - b U +)] 1 2(e 2A 2

m ) (3.4)

must be included into the total action, where NC is the number of colors

in the underlying QCD. The Wess±Zumino action defines the topological
properties of the model, important for the quantization of the solitons. In the

SU(2) case the Wess±Zumino action vanishes identically and was therefore

not present in the discussions of Sections 1 and 2.

From the total action obtained using (3.1) and (3.4) we obtain the

following result for the electromagnetic current:

J m 5 2
F 2

p

8
Tr[Q (U + - m U 1 U - m U +)]

2
F 2

p 2 F 2
K

16
Tr{Q [{US 1 SU+, U + - m U } 1 {SU 1 U +S, U - m U +}]}

2 iL9 Tr{Q - v([U + - vU
+, - m U ] 1 [U - n U

+ U - m U +])}

2
Nc

48 p 2 e m n a b Tr[Q (U + - n U U+ - a U U+ - b U 2 U - vU U - a U U - b U +)]

(3.5)

Following Haberichter et al. (1997), we now confine ourselves to static

rotations in order to establish the slow rotator approach. Due to spin and

isospin invariance this implies the following ansatz for the chiral field:
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U (r, n ) 5 exp( 2 i n l 4) exp[i t ? r0F (r, n ) ] exp(i n l 4) (3.6)

where the chiral angle depends on the flavor orientation via the strangeness-

changing angle n P [0, p /2]. The time dependence of the flavor rotations is

then introduced by introducing the time-dependent meson configuration

U (r, t) 5 A (t) exp[i t ? r0F (r, n )] A +(t) (3.7)

into the total action obtained using (3.1) and (3.4). This gives the Lagrangian

as a function of the time derivatives of the collective rotations A (t), which

are most conveniently parametrized by introducing the angular velocities v a

via the expression

A +(t)AÇ (t) 5
i

2 o
8

a 5 1
l a v a (3.8)

The canonical quantization introduces the right generators of flavor SU(3)
as Ra 5 2 - L / - v a and gives the Hamiltonian of the form

H 5 M ( n ) 1
1

2 H 1

2 V S( n )
, C2[SU(3)] J

1 F 1

2 V N( n )
2

1

2 V S( n ) G J (J 1 1) 2
3

8 V S( n )
(3.9)

together with the constraint R8 5 ! 3/2, obtained from the Wess±Zumino

term and ensuring that the eigenstates of the Hamiltonian (3.9) have a half-
integer spin. In (3.9), Jm 5 2 Rm (m 5 1, 2, 3) is the spin operator and

C2[SU(3)] is the quadratic Casimir operator of SU(3). The explicit expressions

for the inertias V N( n ) and V S ( n ) can be found in Dalarsson (1993, 1995a±d,

1996a±c, 1997a±d). The Hamiltonian (3.9) can be diagonalized exactly and

the eigenfunctions are identified as the distorted SU(3) D-function, since in

the presence of flavor symmetry breaking, the resulting baryon states are no
longer pure octet (for J 5 1/2) and pure decouplet (for J 5 3/2) states. They

contain sizable admixtures of baryon states in higher dimensional SU(3)

representations, like, for example, 10 or 27 (Haberichter et al., 1997).

Using the covariant form of the electromagnetic current (3.5) and the

Hamiltonian (3.9) with the corresponding eigenfunctions, it is possible to

obtain the quadrupole and monopole pieces of the electric and magnetic
form factors, respectively. The former is obtained from the orbital angular

momentum l 5 2 term of the time component of the electromagnetic current

J e.m.
0 and the later is obtained from the spatial components J e.m.

j . It is therefore

suitable to introduce the associated Fourier transforms as follows:
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EÃ(q) 5 # r . e
d 3r j2(qr) 1 z

2

r 2 2
1

3 2 J e.m.
0 (3.10)

MÃ(q) 5
1

2 # r . e
d 3r j1(qr) e 3ijr0i J

e.m.
j (3.11)

Following Dalarsson (1997b), we obtain in the constant-cutoff approach
the results

EÃ(q) 5 2
8 p

15 V N( n )
De.m.,3 #

`

e
dr r 2j2(qr)V0(r, n ) (3.12)

MÃ(q) 5 2
4 p
3 #

`

e
dr r 2j1(qr) F V1(r, n )De.m.,3 2

F 2
K 2 F 2

p

2 ! 3r 2
sin2F d3 a b D a

e.m. D
b
8

2
1

2 H 1

2 V S( n )

1

4 p 2r 2 sin2F
- F

- r
, d3 a b D a

e.m.R
b J G (3.13)

where V S( n ) is the moment of inertia in the strange flavor direction ( a , b 5
4, 5, 6, 7) and De.m., i 5 D3i 1 D8i / ! 3.

The functions V0(r, n ) and V1(r, n ) in (3.13) are given by

V0(r) 5
1

4
sin2F[F 2

p 1 sin2 n (F 2
K 2 F 2

p ) cos F ]

2 2L9 F sin 2F 1 d
2F

dr2 1
2

r

dF

dr 2 1 2 cos 2F 1 dF

dr 2
2

2 6
sin2F

r 2 G (3.14)

V1(r) 5
1

4r 2 sin2F [F 2
p 1 sin2v (F 2

K 2 F 2
p ) cos F ] (3.15)

1
2L9

r 2 F sin 2F
d 2F

dr2 1 2 cos 2F 1 dF

dr 2
2

2 2
sin2F

r 2 G
3.3. Radiative Decay Widths

The radiative decay widths G for the decays of the 3±2
+ baryons to 1±2

+

baryons are then obtained as matrix elements of EÃ(q) and MÃ(q), i.e.,

G E2(B ® g B8) 5
675

8
a e.m. q Z K B8 1 12 1 2 Z EÃ(q) Z B 1 (32 1 2 L Z 2 (3.16)

G M1(B ® g B8) 5 18 a e.m.q Z K B8 1 12 1 2 Z MÃ(q) Z B 1 32 1 2 L Z 2 (3.17)
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where we follow the standard prescription (Dalarsson, 1997b) and take q
to be the momentum of the photon in the rest frame of the 3±2

+ baryon,

and a e.m. 5 1/137. The matrix elements in (3.16) and (3.17) are calculated
in the space of collective coordinates; a detailed account can be found

in general in Park et al. (1991) and Park and Weigel (1992), and in

particular for the decays of the L (1405) resonance in Schat et al. (1995b)

and Dalarsson (1996b). Now we are able to calculate the desired E2/M1

ratio as follows:

E2

M1
5

5

4

| ^ B8(1±2
1 ) | EÃ(q) | B(3±2

1 ) & | 2

| ^ B8(1±2
1 ) | MÃ(q) | B(3±2

1 ) & | 2
(3.18)

The numerical predictions of the present model compared with the results

obtained using CSM in Haberichter et al. (1997) are given in Table I for the
same decays as those presented in Dalarsson (1997b). In the present paper

we only consider the complete Lagrangian with the third term in (3.1)

included, i.e., for L9 5 6.9 3 10 2 3, and use the empirical values for pion

and kaon masses and decay constants.

Table I Numerical Results for E2/M1 Decay Ratiosa

E2/M1 (%)

CSMb

Present results HRSW, Table 2 HRSW, Table 3

D ® g N 2 2.42 ( 2 2.32) 2 2.22 ( 2 2.11) 2 2.35 ( 2 2.24)

S *O ® g L 2 2.03 ( 2 1.94) 2 1.89 ( 2 1.83) 2 1.94 ( 2 1.89)

S * 2 ® g S 2 2 2.21 ( 2 2.11) 2 1.95 ( 2 1.91) 2 2.34 ( 2 2.29)

S *O ® g S O 2 1.20 ( 2 1.15) 2 1.02 ( 2 1.01) 2 1.02 ( 2 1.01)

S *+ ® g S + 2 1.29 ( 2 1.24) 2 1.20 ( 2 1.18) 2 1.19 ( 2 1.18)

J * 2 ® g J 2 2 2.39 ( 2 2.30) 2 2.10 ( 2 2.06) 2 2.48 ( 2 2.43)

J *O ® g J O 2 1.51 ( 2 1.45) 2 1.28 ( 2 1.26) 2 1.25 ( 2 1.23)

a The results shown in parentheses refer to the case when the ratio E2/M1 is rescaled by the

proton magnetic moment. The rescaling of the type E2/M1 ® E2/M1 3 ( m pre
p / m exp

p ) is moti-

vated by the fact that here, as in the case of the CSM (Haberichter et al., 1997), the predicted

value of the proton magnetic moment is lower than the empirical value. For the calculation

of the proton magnetic moment in the constant-cutoff approach see Dalarsson (1993, 1995a±d,

1996a±c, 1997a±d) and Schat et al. (1995b). Furthermore, note that the numerical results of the

constant-cutoff calculations here differ from the constant-cutoff results reported in Dalarsson

(1997b) because of the different structure of the symmetry-breaking terms in the Lagrangian

(3.1) (Haberichter, 1997) as well as the somewhat different values of the parameters used

(Dalarsson, 1997b; Haberichter et al., 1997). We see that the present results are of the same

order of magnitude as the CSM results reported in Haberichter et al. (1997).
b HRSW, Haberichter et al. (1997).
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4. CONCLUSIONS

We have calculated the decay widths for the radiative decays of the
3+

2

baryons in the constant-cutoff approach to the collective treatment of the

SU(3) Skyrme model by separately evaluating the magnetic dipole (M1)

and electric quadrupole (E2) transition matrix elements. As in the CSM

(Haberichter et al., 1997) the total decay widths are strongly dominated by
the M1 contribution, giving E2/M1 ratios of the order of few percent only.

As in the CSM (Haberichter et al., 1997), all the ratios are negative.

We have compared the present results with those obtained using the

CSM, showing that there is a general qualitative agreement between our

results and the CSM results (Haberichter et al., 1997).

On the other hand, the constant-cutoff approach employed in this paper
offers a simpler analytical structure of the results and less complicated calcula-

tions of the quantities which describe the strong and electromagnetic proper-

ties of hyperons (Dalarsson, 1993, 1995a±d, 1996a±c, 1997a±d).

Finally, it should be noted that the empirical values for most of the

calculated quantities are unfortunately difficult to obtain. As argued in

Haberichter et al. (1997), better empirical information about the radiative
decay processes is needed in order to determine the quality of predictions of

different models. Some experiments to that effect are being prepared at several

experimental facilities (see Haberichter et al., 1997, and references therein).
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